
AGS-GNN: Attribute-guided Sampling for Graph Neural Networks
Siddhartha Shankar Das

das90@purdue.edu

Purdue University

West Lafayette, IN, USA

S M Ferdous

sm.ferdous@pnnl.gov

Pacific Northwest National Lab.

Richland, WA, USA

Mahantesh M Halappanavar

hala@pnnl.gov

Pacific Northwest National Lab.

Richland, WA, USA

Edoardo Serra

edoardoserra@boisestate.edu

Boise State University

Boise, ID, USA

Alex Pothen

apothen@purdue.edu

Purdue University

West Lafayette, IN, USA

Abstract
We propose AGS-GNN, a novel attribute-guided sampling algorithm

for Graph Neural Networks (GNNs). AGS-GNN exploits the node

features and the connectivity structure of a graph while simulta-

neously adapting for both homophily and heterophily in graphs.

In homophilic graphs, vertices of the same class are more likely

to be adjacent, but vertices of different classes tend to be adjacent

in heterophilic graphs. GNNs have been successfully applied to

homophilic graphs, but their utility to heterophilic graphs remains

challenging. The state-of-the-art GNNs for heterophilic graphs use

the full neighborhood of a node instead of sampling it, and hence

do not scale to large graphs and are not inductive. We develop

dual-channel sampling techniques based on feature-similarity and

feature-diversity to select subsets of neighbors for a node that cap-

ture adaptive information from homophilic and heterophilic neigh-

borhoods. Currently, AGS-GNN is the only algorithm that explicitly

controls homophily in the sampled subgraph through similar and

diverse neighborhood samples. For diverse neighborhood sampling,

we employ submodularity, a novel contribution in this context.

We pre-compute the sampling distribution in parallel, achieving

the desired scalability. Using an extensive dataset consisting of 35

small (< 100𝐾 nodes) and large (≥ 100𝐾 nodes) homophilic and

heterophilic graphs, we demonstrate the superiority of AGS-GNN
compared to the state-of-the-art approaches. AGS-GNN achieves test
accuracy comparable to the best-performing heterophilic GNNs,

even outperforming methods that use the entire graph for node

classification. AGS-GNN converges faster than methods that sample

neighborhoods randomly, and can be incorporated into existing

GNN models that employ node or graph sampling.

CCS Concepts
• Computing Methodologies → Machine Learning.

Keywords
Graph Neural Networks, Heterophily, Submodular Functions

This work is licensed under a Creative Commons Attribution

International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0490-1/24/08

https://doi.org/10.1145/3637528.3671940

ACM Reference Format:
Siddhartha Shankar Das, S M Ferdous, MahanteshMHalappanavar, Edoardo

Serra, and Alex Pothen. 2024. AGS-GNN: Attribute-guided Sampling for

Graph Neural Networks. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’24), August 25–29, 2024,
Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3637528.3671940

1 Introduction
Traditional Graph Neural Networks (GNNs) rely on the homophilic
property of the learning problem, which assumes that a signif-

icant number of a node’s neighbors share the class label of the

node. However, this assumption has been challenged in recent

years since graphs in several practical applications do not satisfy

homophily [31, 49]. Consequently, GNNs designed with the assump-

tion of homophily fail to classify heterophilic graphs accurately

due to noisy or improper neighborhood aggregation [25]. A sim-

ple Multi-layer Perceptron (MLP) based model that ignores the

graph structure can outperform existing homophilic GNNs on het-

erophilic graphs [8, 23, 24, 26, 45, 51]. As a result, a number of

special-purpose GNNs have been developed to classify heterophilic

graphs [8, 21, 24–26, 42, 43, 49–51].

Although GNNs have been adapted for heterophilic graphs in

earlier work, their applicability is limited since they do not scale

to large graphs and are transductive. Unlike homophilic GNNs [3,

4, 6, 12, 15, 46], where subgraph sampling strategies have been

developed for scaling, currently there are no effective sampling ap-

proaches for heterophilic graphs [23]. Recent authors have enabled

scaling by first transforming node features and adjacency matrix

into lower dimensional representations, and then applying mini-

batching on the combined representations [22, 23]. Thus inference

on heterophilic graphs via graph sampling remains challenging.

Classifying graphs into either heterophilic or homophilic graphs,

as done in the current literature, is problematic due to the presence

of locally homophilic and locally heterophilic nodes. As shown in

Fig. 1 (§2), both homophilic and heterophilic graphs could have

nodes with high local homophily or heterophily. However, there is

no systematic and scalable approach for neighborhood sampling

that distinguishes each node w.r.t. its local homophily property.

We propose a new sampling strategy that incorporates both the

adjacency structure of the graph as well as the feature information

of the nodes that is capable of making this distinction. For a ho-

mophilic node, we build our sampling strategy based on a widely

538

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3637528.3671940
https://doi.org/10.1145/3637528.3671940
https://doi.org/10.1145/3637528.3671940
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3671940&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

used smoothing assumption [36]: labels and features generally cor-

relate positively. Heterophilic nodes of the same labels, however,

are expected to have the same dissimilar neighborhood [25], and

our sampling strategy exploits this. Thus, we generate two sets

of local neighborhood samples for each node: one based on fea-

ture similarity that potentially improves local homophily, while

the other encourages diversity and increases heterophily. These

two samples are adaptively learned using an MLP to select the

appropriate one based on the downstream task. Our attribute-based

sampling strategy can be seamlessly plugged into GNNs designed

for classifying heterophilic graphs and performs well in practice.

The strength of our approach, however, is that even when paired

with GNNs designed for homophilic graphs, we obtain better accu-

racies for heterophilic graphs, thus rendering an overall scalable

approach for the latter graphs. The key contributions and findings

of this work are summarized as follows:

(1) We propose a novel scalable and inductive unsupervised and

supervised feature-guided sampling framework, AGS-GNN, to learn

node representations for both homophilic and heterophilic graphs.

(2) AGS-GNN incorporates sampling based on similarity and diver-

sity (modeled by a submodular function).We are not aware of earlier

work that uses submodularity in this context. AGS-GNN employs

dual channels with MLPs to learn from both similar and diverse

neighbors of a node.

(3) We experimented with 35 benchmark datasets for node classifi-

cation and compared them against GNNs designed for heterophilic

and homophilic graphs. For both types of graphs, AGS-GNN achieved
improved accuracies relative to earlier methods (Fig. 6) (§5.3). Fur-

ther, AGS-GNN also requires fewer iterations (up to 50% less) (§5.4)

to converge relative to random sampling.

2 Preliminaries
Consider a weighted graph G(V, E) with set of vertices V and

set of edges E. We denote the number of vertices and edges by

|V| and |E |. The adjacency matrix of the graph will be denoted by

𝑨 ∈ R |V |× |V |
, and the matrix of 𝑓 -dimensional feature vectors

associated with nodes by 𝑿 ∈ R |V |×𝑓
. We denote 𝑦𝑢 ∈ Y =

{1, 2, · · · , 𝑐} to be the label of a node 𝑢, which belongs to one of the

𝑐 classes, and the vector 𝒚 ∈ Y |V |
to denote the labels of all nodes.

Additionally, the graph may have edge features associated with

dimension 𝑓𝑒 . The degree of node 𝑢 is denoted by 𝑑𝑢 , the average

degree by𝑑 , and the setN(𝑢) denotes the set of neighboring vertices
of a node 𝑢. For a GNN, ℓ denotes the number of layers, 𝐻 the

number of neurons in the hidden layer, and𝑾𝑖
the learnable weight

of the 𝑖-th layer.

2.1 Homophily Measures
The homophily of a graph characterizes how likely it is for ver-

tices with the same labels to be neighbors of each other. Many

measures of homophily fit this definition. But for conciseness, we

will focus here on node homophily (H𝑛) (intuitive), and adjusted ho-
mophily (H𝑎) (handles class imbalance). The local node homophily
of node 𝑢 is H𝑛 (𝑢) = | {𝑣∈N(𝑢) :𝑦𝑣=𝑦𝑢 } |

|N (𝑢) | , and its mean value node
homophily [30] is defined as follows:

H𝑛 =
1

|V|
∑︁
𝑢∈V

H𝑛 (𝑢). (1)

The edge homophily [51] of a graph is H𝑒 =
| { (𝑢,𝑣) ∈E:𝑦𝑢=𝑦𝑣 } |

| E | . Let

𝐷𝑘 =
∑

𝑣:𝑦𝑣=𝑘 𝑑𝑣 denote the sum of degrees of the nodes belonging

to class 𝑘 . Then the adjusted homophily [31] is defined as

H𝑎 =
H𝑒 −

∑𝑐
𝑘=1

𝐷2

𝑘
/(2|E |2)

1 −∑𝑐
𝑘=1

𝐷2

𝑘
/2|E |2

. (2)

The values of the node homophily and edge homophily range

from 0 to 1, and the adjusted homophily ranges from − 1

3
to +1

(Proposition 1 in [31]). In this paper, we will classify graphs with

adjusted homophily less than 0.50 as heterophilic. Fig. 1 shows

the distribution of the local node homophily of a homophilic and

a heterophilic graph. We see that both the graphs have a mix of

locally heterophilic and locally homophilic nodes.

0.00 0.25 0.50 0.75 1.00
Local Node homophily

0.0

2.0×104

4.0×104

6.0×104

8.0×104

N
um

be
r

of
 N

od
es

(a) Reddit (homophilic)

0.00 0.25 0.50 0.75 1.00
Local Node homophily

0.0

1.0×103

2.0×103

3.0×103

4.0×103

N
um

be
r

of
 N

od
es

(b) Penn94 (heterophilic)

Figure 1: The distribution of local node homophily in a ho-
mophilic and a heterophilic graph.

2.2 Effect of Homophily on Classification
To highlight the effect of homophily on node classification, we

conduct an experiment using synthetic graphs with different levels

of node homophily. These synthetic graphs are generated from

existing graphs by ignoring the structure information of the graph

but retaining the node features and class labels. Following [25],

to generate an undirected graph with an average degree of 𝑑 and

node homophilyH𝑛 , for each node 𝑢 we randomly assignH𝑛 · 𝑑/2
edges from the same class as 𝑢 and (1−H𝑛) ·𝑑/2 edges from other

classes. We left the class distribution unbalanced, as it is in the

original graph, making it more challenging for GNNs since the

neighborhood of a heterophilic node could potentially have more

nodes from the majority class.

Fig. 2 shows the performance of GSAGE [12] (a homophilic

GNN) and ACM-GCN [25] (a heterophilic GNN) on the synthetic

graphs generated from Squirrel and Chameleon [33] datasets. We

use two versions of ACM-GCN, one with three channels (low-pass,

high-pass, and identity) and the other with an additional channel

with graph structure information (ACM-GCN-struc). The original

Squirrel and Chameleon datasets are heterophilic, and the ACM-

GCN-struc is the best-performing. For synthetic graphs, on both

Squirrel and Chameleon, (Fig. 2), we see that surprisingly the worst

𝐹1 score is not achieved on the graphs whose homophily value is

zero but for values near 0.25. When the homophily score is high,

GNNs perform well since they aggregate relevant information, but

as we observe ACM-GCN also does well at a very low homophily.

This is because some locally heterophilic nodes become easier to

classify after neighborhood aggregation on features. (note that

539

AGS-GNN: Attribute-guided Sampling for Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Node homophily

F
1
S
co
re

Squirrel graph with d = 42

GSAGE
ACM-GCN

ACM-GCN-Struc

(a) Squirrel Synthetic

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Node homophily

F
1
S
co
re

Chameleon graph with d = 16

GSAGE
ACM-GCN

ACM-GCN-Struc

(b) Chameleon Synthetic

Figure 2: 𝐹1 Score comparison of GSAGE and ACM-GCN on
synthetic graphs generated from Squirrel (a) and Chameleon
(b) datasets with varying node homophily.

features are not considered in the definition of homophily based

solely on labels). Another intuitive reason is that when two nodes

are adjacent to the same dissimilar (wrt class labels) neighbors, the

high pass filters (e.g., graph Laplacian) used in ACM-GCN treat

these nodes as similar and can classify them correctly.

2.3 Similarity, Diversity, and Homophily
Nodes with similar features tend to have similar labels [36]. There-

fore, if instead of sampling the neighbors of a node 𝑢 uniformly at

random, we sample neighbors that are similar to 𝑢 in feature space,

we are likely to increase the homophily of the sampled subgraph.

However, this strategy alone is not enough for heterophilic

graphs as they include both locally homophilic and heterophilic

nodes (Fig. 1). Two heterophilic nodes with the same label are ex-

pected to have similar class label distributions in their neighbors.

In other words, the diversity in their class labels makes them sim-

ilar. It has been shown [25, 42, 49] that high-pass filters [9] (e.g.,

variants of graph Laplacians: 𝑳 = 𝑫 −𝑨, 𝑳𝑠𝑦𝑚 = 𝑫−1/2𝑳𝑫−1/2
, or

𝑳𝑟𝑤 = 𝑫−1𝑳) capture the difference between nodes, and low-pass

filters (e.g., scaled adjacency matrices, 𝑨𝑠𝑦𝑚 = 𝑫−1/2𝑨𝑫−1/2
, or

𝑨𝑟𝑤 = 𝑫−1𝑨) retain the commonality of node features. Here 𝑫 is

the diagonal degree matrix of the graph. Therefore, if we sample

diverse neighbors (in feature space) and use a GNNwith a high-pass

filter, we expect a higher chance of mapping two heterophilic nodes

of same class to the same space (after feature transformation) since

they will have the same dissimilar neighborhood.

A mathematical approach to ensure diversity is through submod-
ular function maximization [20, 34]. A submodular function is a set

function that favors a new node that is most distant in feature space

to add to a partially sampled neighborhood. It accomplishes this by

defining a suitable marginal gain of the new element with respect

to the current neighborhood, and maximizing this value. However,

employing only diverse neighborhoods can also cause issues since

two nodes with different labels may have similar neighborhoods

after sampling. In this scenario, sampling based on similarity is

more appropriate. For the spectral domain, AGS-GNN considers two

channels: one with a sampled subgraph ensuring diversity (used

with a high-pass filter) and the other with a subgraph sampled based

on similarity (used with a low-pass filter). Similar to ACM-GCN,

we can also use an identity channel. However, spectral GNNs are
difficult to scale as they often do not support mini-batching, and

are transductive. Hence, we consider spatial GNNs for heterophilic

graphs, which employ graph topology to develop aggregation strate-

gies. For heterophilic graphs, both similar and dissimilar neighbors

need to be considered, and in AGS-GNN, we achieve this through
attribute-guided biased sampling of similar and diverse samples.

2.3.1 Node Homophily with Similar andDiverse neighborhood: Con-
sider an ego node 𝑡 = {𝒙𝑡 , 𝑦𝑡 } with feature 𝒙𝑡 , label 𝑦𝑡 , and local

node homophily H𝑛 (𝑡). Let the feature and label tuples of the

neighbors of 𝑡 be N(𝑡) = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), · · · , (𝒙𝑑𝑡 , 𝑦𝑑𝑡)}. From
the definition of homophily, the probability of randomly select-

ing a neighbor 𝑖 ∈ N (𝑡) with the same label as the ego node is

𝑃U (𝑦𝑖 = 𝑦𝑡) = H𝑛 (𝑡). HereU refers to the distribution of selecting

a neighbor uniformly at random. Let 𝑠 (𝒙𝑖 , 𝒙𝑡) be a positive similar-

ity score in features between a neighbor, 𝑖 , and the ego node, 𝑡 .

Assumption 2.1. For a node 𝑡 , the average similarity of neigh-
bors with the same label as 𝑡 is greater than or equal to the average
similarity of all neighbors.

Lemma 2.1. With Assumption 2.1, if the probability of selecting a
neighboring node is proportional to its similarity to the ego node 𝑡 ,
the local node homophily of sampled neighborhood H ′

𝑛 (𝑡) ≥ H𝑛 (𝑡).
If the sampling probability distribution is S, then 𝑃S (𝑦𝑖 = 𝑦𝑡) ≥
𝑃U (𝑦𝑖 = 𝑦𝑡).

To retrieve a diverse set of neighbors we can employ a submodu-

lar function. An example could be the facility location function based
on maximizing pairwise similarities between the points in the data

set and their nearest chosen point, 𝑓 (𝑆,𝐴) = ∑
𝑦∈𝐴 max𝑥∈𝑆 𝜙 (𝑥,𝑦),

where 𝐴 is the ground set, 𝑆 ⊆ 𝐴 is a subset, and 𝜙 is the similarity

measure. In our context, 𝑆 is the current set of selected nodes initial-

ized with ego node 𝑡 , and ground set 𝐴 = N(𝑡) ∪ {𝑡}. The marginal
gain is 𝑓𝑖 = 𝑓 (𝑆 ∪ {𝑖}, 𝐴) − 𝑓 (𝑆,𝐴) for each neighbor 𝑖 ∈ N (𝑡) \ 𝑆 .
Successively, neighbors are added to the sampled neighborhood by

choosing them to have maximum marginal gain with respect to the

current sample of the neighborhood.

Assumption 2.2. The average marginal gain of the neighbors of
a node 𝑡 with the same label as 𝑡 is less than or equal to the average
marginal gain of all neighbors.

Lemma 2.2. With Assumption 2.2, if the probability of selecting a
neighboring node is proportional to its marginal gain wrt the ego node
𝑡 , then the local node homophily of sampled neighborhood H ′

𝑛 (𝑡) ≤
H𝑛 (𝑡). If the sampling probability distribution is D, then 𝑃D (𝑦𝑖 =
𝑦𝑡) ≤ 𝑃U (𝑦𝑖 = 𝑦𝑡).

Proofs of Lemmas 2.1 and 2.2 are included in Appendix 7.1 and

Appendix 7.2, respectively. From Lemma 2.1, sampling neighbors

based on feature-similarity improves homophily, which potentially

helps to map homophilic nodes of the same labels into the same

space. We assume features and labels to be positively correlated;

thus, if we ensure feature diversity among neighbors, we can also

expect label diversity in the samples, reducing local homophily (as

shown in Lemma 2.2) and increasing the chances of mapping two

heterophilic nodes into the same space. We devise feature-similarity

and feature-diversity-based sampling based on these results in the

next Section.

540

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

3 Proposed Method: AGS-GNN
Fig. 3 shows an overview of the AGS-GNN framework. AGS-GNN
has a pre-computation step that ranks the neighbors of nodes and

computes edge weights to form a distribution to sample from in

the sampling phases during training.

3.1 Pre-computing Probability Distribution
An ideal graph sampling process has the following requirements:

(i) Nodes with strong mutual influences (in terms of structure and

attributes) should be sampled together in a subgraph [46]. (ii) It

should be able to distinguish between similar and dissimilar neigh-

bors (especially for heterophilic graphs) [49]. (iii) Every edge should

have a non-zero probability of being sampled in order to generalize

and explore the full feature and label space.

In this Section, we will devise sampling strategies satisfying

these requirements. We assume that we have access to a similar-

ity measure between any two nodes in the graph. This similarity

function typically depends on the problem and the dataset. For an

example, in text based datasets, we may use cosine similarity of

the feature vectors (e.g., TF-IDF) generated from the texts of the

corresponding items. We may also learn the similarities when an

appropriate similarity measure is not apparent. Once we have the

similarity function, for each vertex 𝑢, we construct a probability

distribution over its neighbors as follows: (i) rank the neighboring

nodes (N(𝑢)) using their similarity scores to 𝑢. (ii) assign weights

to the adjacent edges of 𝑢 based on this ranking. (iii) normalize the

weights to construct the probability mass function (PMF) P(𝑢) of
the distribution over N(𝑢).

We construct the probability distribution using the rank rather

than the actual similarity values, since the distribution using the

similarity values could be skewed and extremely biased towards a

few top items. Here we consider two choices of rankings of neigh-

borhoods that are suited for homophilic and heterophilic graphs.

3.1.1 Ranking based on similarity: For this case, our goal is to sam-

ple subgraphs favoring similar edges to be present more frequently

in the subgraph. To achieve that we propose to construct a prob-

ability distribution over the edges based on the similarity scores.

We sort the similarity values of all the neighboring vertices of a

vertex from high to low and rank adjacent edges based on the ranks.

Thus, although the similarity function is symmetric, we may get

two different ranks for each edge. Note that the computation that

generates the ranks is local to each vertex and thus highly parallel.

For cosine similarity, the time complexity to rank the adjacent edges

of a vertex 𝑢 is O(𝑓 𝑑𝑢 log𝑑𝑢).
Once we have the rankings, we can use these to construct differ-

ent probability distributions. Some choices (Fig. 4) of Probability

Mass Functions (PMF) can be linear or exponential decay with non-

zero selection probability to the later elements in the ranking order.

Another options is the step function where the top 𝑘1% neighbors

of a vertex are given a uniform weight (𝜆1), the next 𝑘2% are given

𝜆2, and the rest are given 𝜆3, where 𝜆1 > 𝜆2 > 𝜆3. The benefit of

using such function is that we can partially sort the top (𝑘1 + 𝑘2)%
of neighbors avoiding the full ordering. Algorithm 1 shows how to

get sampling probabilities using rank by similarity.

3.1.2 Ranking based on diversity: As discussed in Section 2.3, for a

heterophilic graph, in general it is desirable to construct subgraphs

Algorithm 1 RankBySimilarity(G,𝑿 ,S,P, ∗params)

Input :Graph G(V, E) , Feature matrix 𝑿 ∈ R|V|×𝑓
, Similarity function

S, Probability Mass Function, P
1: for 𝑢 ∈ V do
2: N(𝑢) = GetNeighbors(G,𝑢) /* Get neighbors of vertex 𝑢 */

3: 𝑆𝑢 = S(𝑿 [𝑢],𝑿 [N(𝑢)]) /* Similarities from 𝑢 to N(𝑢)
*/

4: 𝑅𝑢 = Rank(𝑁𝑢 , 𝑆𝑢) /* Rank N(𝑢) in desc. order of 𝑆𝑢 */

5: 𝑊𝑢 = GetWeights(𝑅𝑢 , P) /* Assign weights 𝑊𝑢,𝑣 : 𝑣 ∈ N(𝑢)
from the ranks 𝑅𝑢 using P */

6: 𝑃𝑢,𝑣 =𝑊𝑢,𝑣/
∑

𝑣∈N(𝑢)𝑊𝑢,𝑣 /* Edge sampling probability */
7: end for
8: return 𝑃

based on diversity in the class labels. To accomplish that, we propose

a sampling strategy based on optimizing (a nonlinear) submodular

function. A submodular function is a set function that has the

diminishing returns property. Formally, given a ground set 𝑉 and

two subsets 𝐴 and 𝐵 with 𝐴 ⊆ 𝐵 ⊆ 𝑉 , a function 𝑓 is submodular if

and only if, for every 𝑒 ∈ 𝑉 \𝐵, 𝑓 (𝐴∪𝑒)−𝑓 (𝐴) ≥ 𝑓 (𝐵∪𝑒)−𝑓 (𝐵). The
quantity on either side of the inequality is called the marginal gain
of an element 𝑒 with respect to the two sets 𝐴 or 𝐵. For maximizing

cardinality constrained submodular functions, where the solution

set (𝑆) is required to be at most 𝑘 in size, a natural Greedy algorithm

that starts with empty solution and augments it with the element

with highest marginal gain is (1 − 1/𝑒)-approximate [28].

To see how a submodular function may behave differently than

the (linear) similarity based function (Section 3.1.1), consider a paper

citation graph [35] where the nodes are the scientific documents and

the feature on each node is the binary count vector of the associate

text. For a vertex𝑢, our goal is to find a set of 𝑘 neighboring vertices

of𝑢, (𝑆 ⊆ N(𝑢)where |𝑆 | = 𝑘), such that given the initial set {𝑢}, we
maximize the number of unique word counts. This objective can be

modeled as a submodular function known as maximum 𝑘-coverage,

and the Greedy approach would select successive nodes with max-

imum marginal gains wrt to 𝑆 . Intuitively, the Greedy algorithm

prioritizes neighbors that have more distinct words than the ones

covered through the selected nodes. Therefore, if different word sets

correspond to different class labels, the final set 𝑆 will likely repre-

sent a diverse set. This contrasts sharply with the ranking based on

similarity, where wewould encourage neighbors with similar words.

Facility Location, Feature-based functions, and Maximum Coverage
are some submodular functions applicable in the graph context.

Given a submodular function, for a vertex 𝑢, we execute the

Greedy algorithm on the neighbors of 𝑢 to compute their marginal

gains, assuming 𝑢 is in the initial solution. We use these marginal

gains to rank neighbors of 𝑢 and then use the ranks to construct a

probability distribution as described in Section 3.1.1. To compute

the solution faster, we employed a variant of the Greedy algorithm

which is called Lazy Greedy [27] that can reduce the number of

marginal gain computations. Algorithms 2 and 3 show the pseu-

docode of the Lazy Greedy version of the ranking procedure using

the facility location function. Since we need to compute pairwise

similarity for this function, the complexity of computing the ranks

of the neighbors of a vertex 𝑢 is O(𝑓 𝑑2𝑢).

541

AGS-GNN: Attribute-guided Sampling for Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

0

1

2

3

4

5

6

02

3

4

5

6

1

r'1

r'2

r'1 r'2

r'1

r'2

r'3

r'4

r'1
r'2

r'1

r'2

r'3
r'4

r'1

r'2

r'2
r'1

02

3

4

5

6

1

r''1

r''2

r''1r''2

r''1
r''2

r''3r''4
r''1

r''2

r''1

r''2

r''3

r''4

r''1

r''2

r''2
r''1

Original Graph,
with training nodes {0,6}

Ranking by Similarity Ranking by Diversity

P
re

co
m

pu
ta

ti
on

(a) Rank of neighbors for similar and diverse sampling.

0

1

4

2

0

5

6

6

5

4

6

4

5

6

0

4

2

2

0

1

0

6

5

4

6

4

3

0

batch graph g2({0,6})
with diverse
neighborhood samples

batch graph g1({0,6})
with similar
neighborhood samples

GNNs h{0,6}

Homophilic GNN

Heterophilic GNN

(b) Node Sampling from training vertices with hop size 2

Figure 3: AGS-GNN framework with Node Sampling. a) In the pre-computation step, ranks are computed based on feature
similarity and diversity, and each edge has two ranks based on each vertex’s perspective. b) The probability mass function is
used to get sampling probabilities from ranks, and the figure demonstrates how two types of weighted neighborhood sampling
are computed from the training nodes.

Step
Uniform

Exponential
decay

Piecewise
Linear

Figure 4: Probability Mass Functions (PMFs) for weights used
later for selection probabilities.

Algorithm 2 RankByDiversity (G,𝑿 ,V,S,P, ∗params)

Input :Graph G(V, E) , Feature matrix 𝑿 ∈ R|V|×𝑓
, Similarity function

S, Probability Mass Function, P
1: for 𝑢 ∈ V do
2: N(𝑢) = GetNeighbors(G,𝑢) /* Get neighbors of vertex 𝑢 */

3: 𝑅𝑢 = LazyGreedy(N(𝑢),𝑢,𝑿𝑢 |𝑿N(𝑢)) /* Rank N(𝑢) */

4: 𝑊𝑢 = GetWeights(𝑅𝑢 , P) /* Assign weights 𝑊𝑢,𝑣 : 𝑣 ∈ N(𝑢)
from the ranks 𝑅𝑢 using P */

5: 𝑃𝑢,𝑣 =𝑊𝑢,𝑣/
∑

𝑣∈N(𝑢)𝑊𝑢,𝑣 /* Edge sampling probability */
6: end for
7: return 𝑃

3.1.3 Learnable Similarity Function: When we lack domain knowl-

edge to compute an appropriate similarity metric, we can use the

training subgraph to train a regression model to learn the edge

weights of the graphs [8]. We form training batches with equal

numbers of edges and non-edges randomly chosen from the train-

ing subgraph. We set the target label as 1 for nodes with the same

labels and 0 otherwise, and then train a model using the batches

to get an approximation of edge weights. We use these weights as

similarity values to compute ranks based on similarity or diversity

(as detailed in Section 3.1.1 and Section 3.1.2), and to compute a

probability distribution over the directed edges. Given the number

of training edges and an equal number of non-edges, we can expect

the computation complexity to be O(𝑓 |E |). The neural network
model is shallow, learnable parameters are relatively small, and

computation is performed in batches, making it very fast. Algo-

rithm 4 shows training procedure for a Siamese [7] edge-weight

computation model SIMW.

Algorithm 3 LazyGreedy (N(𝑢), 𝑢,𝑿 ′,S)
Input :N(𝑢) is the neighbors of ego node 𝑢, 𝑿 ′ ∈ R|N (𝑢)∪{𝑢}|

is the

feature of N(𝑢) ∪ {𝑢}, Similarity function S
1: kernel = compute_pairwise_similarity(X′, S)
2: 𝑆 = {𝑢} /* Initialize set with 𝑢 */

3: 𝑌 = {𝑢} ∪ N(𝑢) /* Initialize Ground set */
4: 𝑆gain = Gain(𝑆,𝑌, kernel)
5: 𝐻 = MaxHeap(𝑆gain,N(𝑢)) /* Initialize max-heap 𝐻 with

key ∈ 𝑆gain and element ∈ N(𝑢) */
6: while 𝐻 ≠ ∅ do
7: (gain, 𝑣) = 𝐻.pop()
8: gain𝑣 = Gain(𝑆 ∪ {𝑣}, 𝑌 , kernel) − 𝑆gain

9: (gain
2
, ·) = 𝐻.top()

10: if gain𝑣 ≥ gain
2
then

11: 𝑆 = 𝑆 ∪ {𝑣}
12: 𝑆gain = Gain(𝑆,𝑌, kernel)
13: else
14: 𝐻.push(gain𝑣, 𝑣)
15: end if
16: end while
17: 𝑅𝑢 = Rank(𝑆) /* Rank the vertices by marginal gain */
18: return 𝑅𝑢

Algorithm 4 LearnSimilarity (G,𝑿 ,𝒚)
Input :Graph G(V, E) , Feature matrix 𝑿 ∈ R|V|×𝑓

, Label 𝒚 ∈ Y|V|

1: G′ = Subgraph(G,𝒚) /* Extract training subgraph */

2: SIM𝑾 = Model(𝑓 , 𝐻, ℓ) /* Initialize a Siamese model */
3: for epoch in num_epochs do
4: 𝐵 = Batch(G′) /* Create batch with equal number edges and

non-edges */

5: 𝑇 = [(𝑦𝑢 = 𝑦𝑣) : (𝑢, 𝑣) ∈ 𝐵] /* Create target label */

6: SIM𝑾 = Train(𝐵,𝑇) /* Train SIM𝑾 using 𝐵,𝑇 */
7: end for
8: E′ = SIM𝑾 (E) /* Predict edge weight */
9: return SIM𝑾 , E′

3.2 Sampling
Algorithm 5 describes a node sampling process for training, AGS-NS,
that is used in the AGS-GNN framework. The method NodeSample

542

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

is employed for sampling an ℓ-hop neighborhood based on the

probability distribution derived from learned or computed weights.

Algorithm 5 AGS-NS (G,𝑿 ,𝒚) [Node Sampling]

Input :Graph G(V, E) , Feature matrix 𝑿 ∈ R|V|×𝑓
, Label, 𝒚 ∈ Y|E |

1: S = LearnSimilarity(G,𝑿 ,𝒚)
2: P = ′

step
′ /* probability mass function */

3: 𝑅1 = RankBySimilarity(G,𝑿 , S, P)/* Alg. 1 */

4: 𝑅2 = RankByDiversity(G,𝑿 , S, P)/* Alg. 2 */
5: for epoch in num_epochs do
6: nodes,𝒚

nodes
= BatchOfTrainingNodes(G,𝒚) /* random nodes

from training vertices */

7: 𝑔1 = NodeSample(𝑅1, nodes) /* similar samples */

8: 𝑔2 = NodeSample(𝑅2, nodes) /* diverse samples */
9: output = GNN𝑾 (𝑔1, 𝑔2)
10: 𝑙 = loss(output,𝒚

nodes
)

11: Backward propagate from 𝑙 to update𝑾
12: end for

AGS can be plugged in with other GNNs that use a sampling

strategy. Here, we demonstrate this with GSAGE and call it AGS-

GSAGE. The original formulation of GSAGE for 𝑖-th layer is,

𝒉(𝑖)𝑣 = 𝜎 (𝑾 (𝑖) ,𝒉(𝑖−1)𝑣 |AGG({𝒉(𝑖−1)𝑢 : 𝑢 ∈ N𝑟𝑛 (𝑣)}) . (3)

Here 𝒉 denotes feature vectors, N𝑟𝑛 (𝑣) (⊆ N(𝑣)) is the subset of
neighbors of 𝑣 (of size 𝑘) sampled uniformly at random. AGG is

any permutation invariant aggregation function (e.g., mean, sum,
max, LSTM, etc.).

In AGS-GSAGE, we use the probability distribution derived in

Section 3.1 to sample with or without replacement from the neigh-

borhood of a node. Depending on the nature of the graph, single or

dual-channel GNNs might be necessary. Some homophilic graphs

may have only a few locally heterophilic nodes, where samples

from a distribution generated by similarity only may be sufficient.

However, we expect the dual-channel AGS to perform better for het-

erophilic graphs since they typically have both locally homophilic

and heterophilic nodes.

Fig. 5 shows some possible computation graphs. The dual-channel

AGS mechanism can be incorporated easily into GSAGE. We gener-

ate two similar and diverse neighborhood samples for the target

node, compute the transformed feature representations using both

samples and use MLPs to combine these representations.

𝒉(𝑖)𝑣𝑠𝑖𝑚 = 𝜎 (𝑾 (𝑖)
𝑠𝑖𝑚

,𝒉(𝑖−1)𝑣 |AGG({𝒉(𝑖−1)𝑢 : 𝑢 ∈ N𝑠𝑖𝑚 (𝑣)}) (4)

𝒉(𝑖)𝑣𝑑𝑖𝑣
= 𝜎 (𝑾 (𝑖)

𝑑𝑖𝑣
,𝒉(𝑖−1)𝑣 |AGG({𝒉(𝑖−1)𝑢 : 𝑢 ∈ N𝑑𝑖𝑣 (𝑣)}) . (5)

Here N𝑠𝑖𝑚 (𝑣) and N𝑑𝑖𝑣 (𝑣) are the subset of neighbors of 𝑣 sam-

pled from the distribution based on similarity and diversity, respec-

tively. We can combine these representations by concatenating,

𝒉(𝑖)𝑣 = MLP(𝒉(𝑖)𝑣𝑠𝑖𝑚 |𝒉(𝑖)𝑣𝑑𝑖𝑣
) or using skip connections,

𝒉(𝑖)𝑣 = MLP(𝜎 (𝑾 (𝒉(𝑖)𝑣𝑠𝑖𝑚 |𝒉(𝑖)𝑣𝑑𝑖𝑣
) + 𝒉(𝑖)𝑣𝑠𝑖𝑚 + 𝒉(𝑖)𝑣𝑑𝑖𝑣

)) . (6)

Combining representations at the root of the computation graph

as shown in Fig. 5c can be better than combining two different

samples at each node of the tree, as in Fig. 5d. This avoids overfitting

and makes it computationally efficient. For transductive learning,

a) b) c) d)

Target node
Similar sample
Diverse sample
GNN layer
MLP layer

Figure 5: Computation graph with sample size 𝑘 = 2 and hop-
size 2. a), b) samples from similarity and diversity ranking
for a single channel, c) dual channel with combined represen-
tation at the target node, and d) similar and diverse weighted
samples at each sampled node.

as we have already precomputed the probability distributions, the

inference process works similarly to the training phase. In inductive

setting, we have to compute the probability distribution over the

neighbors of a node as described in Section 3.1.

3.2.1 Other sampling strategies and models: AGS can also be inte-

grated into ACM-GCN [25] and other filter-based spectral GNNs.

At the start of the epoch, we sample 𝑘 neighbors of each node from

the similarity and diversity based distributions and construct two

sparse subgraphs. We can then use the subgraph based on similarity

with a low-pass filter and the subgraph based on diversity with a

high-pass filter. We can employ graph sampling strategies (instead

of node sampling), such as weighted random walks, and use them

with existing GNNs. We call our graph sampling GNN AGS-GS.For
the downstream model, there is flexibility to adapt existing models

like Chebnet [13], GSAINT [46], GIN [40], GCN [18], and GAT [37].

We can also use two separate GNNs in two separate channels.

3.3 Computation Complexity
The pre-computation of the probability distribution requiresO(𝑓 |V|·
𝑑 log𝑑) and O(𝑓 |V|𝑑2) operations for similarity and facility loca-

tion based ranking, respectively. If the similarity metric is required

to be learned the added time complexity is O(𝑓 |E |). The training
and memory complexity depend on the usage of underlying GNNs.

Let 𝐻 , the number of hidden dimensions, be set to 𝑓 for all ℓ lay-

ers. For Stochastic Gradient Descent (SGD)-based approaches, let

𝑏 be the batch size, and 𝑘 be the number of sampled neighbors

per node. When a single channel is used, each node expands to 𝑘ℓ

nodes in its computation graph, and requires 𝑓 2 operations to com-

pute the embedding (a matrix-vector multiplication) in every epoch.

Therefore, for |V| nodes, the per epoch training time complexity is

O(|V|𝑘ℓ 𝑓 2). The memory complexity is O(𝑏𝑘ℓ 𝑓 + ℓ 𝑓 2), where the
first term corresponds to the space for storing the embedding, and

the second term corresponds to storage for all weights of neurons

of size,𝑾 ∈ R𝑓 ×𝑓 .
For single channel node sampling (Fig. 5a, b), the training and

memory complexity of AGS-GNN is similar to GSAGE. The training

and memory requirements are twice as much for dual channels

using the same sampling size, leaving the asymptotic bounds un-

changed. However, for the dual channel with computation graph

scenario shown in Fig. 5d, where each node generates two types of

samples of size 𝑘 , the per epoch computation complexity becomes

O(|V|2ℓ𝑘ℓ 𝑓 2). One way to ameliorate this cost is to reduce the

sample neighborhood size by half.

543

AGS-GNN: Attribute-guided Sampling for Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

4 Related Work
While Spatial GNNs focus on graph structure (topology) to develop

aggregation strategies, spectral GNNs leverage graph signal pro-

cessing to design graph filters. Spectral GNNs use low-pass and

high-pass filters to extract low-frequency and high-frequency sig-

nals adaptively for heterophilic graphs. ACM-GCN [25] is one of

the best-performing heterophilic GNNs that uses adaptive channels

with low-pass and high-pass filters. Recently, the authors of [42]

proposed an adaptive filter-based GNN, ALT, that combines signals

from two filters with complementary filter characteristics to classify

homophilic and heterophilic graphs. These methods perform well

for small heterophilic graphs but do not scale to large graphs. In the

spectral domain, AGS-GNN can be used in conjunction with these

approaches by computing feature-similarity and feature-diversity-

based sparse graphs at first before applying filters for large graphs.

For applying spatial GNNs to heterophilic graphs, rather than

using average aggregation (as in homophilic GNNs), edge-aware

weights of neighbors can be assigned according to the spatial graph

topology and node labels. GGCN [43] uses cosine similarity to create

signed neighbor features; the intuition is to send positive attributes

to neighbors in the same class and negative ones to neighbors in

different classes. GPNN [44] considers ranking the neighbors based

on similarity and uses a 1D convolution operator on the sequential

nodes. Another related work is SimP-GCN [16], which computes

the node similarity and then chooses the top 𝑘 similar node pairs in

terms of feature-level cosine similarity for each ego node, and then

constructs the neighbor set using the 𝑘-NN algorithm. AGS-GNN,
in contrast, uses submodularity, node-similarity, reweighting, and

sampling of the subgraph instead of reconstructing neighbor sets.

When learned weight functions are considered, AGS-GNN can be

placed into the category of supervised sampling. LAGCN [2] trains

an edge classifier from the existing graph topology, similar to our

regression task of weight approximation. NeuralSparse [48] learns

a sparsification network to sample a 𝑘-neighbor subgraph (with a

predefined 𝑘), which is fed to GCN [18], GSAGE [12] or GAT [37].

Unlike our heuristic-based sampler, NeuralSparse has end-to-end

training of the sampler network and GNN, and may require more

iterations to find appropriate sampling probabilities.

There are only a few scalable GNNs for heterophilic graphs.

The most notable one is LINKX [23], which is transductive as the

model architecture depends on node size. A recent scalable GNN,

LD2 [22], attempts to remedy this by transforming the adjacency

and the feature matrix into embeddings as a pre-computation and

then applying feature transformation in a mini-batch fashion.

5 Experiments

5.1 Dataset, Setup, and Methods

5.1.1 Dataset: We experimented with 35 graphs of different sizes

and varying homophily. We also generated synthetic graphs of dif-

ferent homophily and degree distributions while retaining the node

features for ablation studies and scaling experiments. We consid-

ered the node classification task in our experiments. For heterophily

studies, we used: Cornell, Texas, Wisconsin [30]; Chameleon,
Squirrel [33]; Actor [30]; Wiki, ArXiv-year, Snap-Patents,
Penn94, Pokec, Genius, Twitch-Gamers, reed98, amherst41,

cornell5, and Yelp [23]. We also experimented on some recent

benchmark datasets, Roman-empire, Amazon-ratings, Mineswe-
eper, Tolokers, and Questions from [32]. We converted a few

multi-label multiclass classification problems (Flickr, Amazon-
Products) to single-label multiclass node classification, and their

homophily values became relatively small, making themheterophilic.

For homophily studies we used Cora; Citeseer; pubmed; Coauthor-
cs, Coauthor-physics; Amazon-computers, Amazon-photo; Red-
dit [12]; Reddit2 [46]; and, dblp.

5.1.2 Experimental Setup: All evaluations are repeated ten times

using a split of 60%/20%/20% (train/validation/test), unless a specific

split is specified. All experiments are executed on 24GB NVIDIA

A10 Tensor Core GPU. For all benchmark models, we use the set-

tings specified in their corresponding papers, and for AGS-GNN, we
use two message-passing layers (ℓ = 2) and a hidden layer with

dimension 𝐻 = 256. We use the Adam [17] optimizer with a learn-

ing rate of 10
−3

and train for 250 epochs or until convergence. A

model converges if the standard deviation of the training loss in

the most recent 5 epochs (after at least 5 epochs) is below 10
−4
.

For node sampling, we use a batch size of 512 to 1024 with neigh-

borhood sample size 𝑘 = [25, 10] or [8, 4] in the two hops unless

otherwise specified. For graph sampling, we use a batch size of 6000

and a random walk step size of 2. For reporting accuracy, we select

the model that gives the best validation performance. Depending

on the models, we use a dropout probability of 0.2 or 0.5 during

training. All of the implementations are in PyTorch [29], PyTorch

Geometric [10], and Deep Graph Library (DGL) [38]. For computing

distributions based on submodular ranking, we used the Apricot

library [34]. We modified the Apricot code to make it more efficient.

Source codes for all our implementations are provided on GitHub
1
.

5.1.3 Implemented Methods: We consider graphs withH𝑎 ≤ 0.5

to be heterophilic. The small instances contain graphs with less

than 100𝐾 nodes, and they fit in the GPU memory. The larger

instances are compared against only scalable homophilic and het-

erophilic GNNs. We compare AGS-GNN (the Node Sampling AGS-NS
variant) with other Node Sampling methods (GSAGE [12]), Graph-

Sampling (GSAINT [46]), and Heterophilic GNNs (LINKX [23],

ACM-GCN [25]). LINKX is used only for small graphs, where the

entire graph fits into GPU memory. For large graphs, we used the

row-wise minibatching of the adjacency matrix (AdjRowLoader) for
LINKX, which is denoted by LINKX+. Since, most of the heterophilic

GNNs require the entire graph and do not support mini-batching,

we compare AGS-GNNwith 18 standard heterophilic and homophilic

GNNs on small heterophilic graphs only.

5.2 Key Results
In Fig. 6, we show the performance profile plot of the algorithms

w.r.t. their relative 𝐹1-score. For each graph, we compute the relative

𝐹1-score for all algorithms by subtracting their 𝐹1-score from the

best one. Thus, the best performing algorithm for a problem receives

a score of 0, and for all other algorithms, the difference is positive.

The X-axis of Fig. 6 represents these relative values from the best-

performing algorithms across the graph problems, and the Y-axis

shows the fraction of problems that achieve 𝐹1-score within the

bound on the difference specified by the X-axis value. Thus, the

1
GitHub link for AGS-GNN and all other methods.

544

https://github.com/siddhartha047/AGS-GNN

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

0 10 20 30
Loss of Quality (F1) wrt to the Best

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s (
17

 P
ro

bl
em

s) GSAGE
GSAINT LINKX

ACM-GCN AGS-NS

GSAGE
GSAINT
LINKX
ACM-GCN
AGS-NS

(a) Small Heterophilic Graphs

0 10 20
Loss of Quality (F1) wrt to the Best

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s (
11

 P
ro

bl
em

s) GSAGE
GSAINT

LINKXACM-GCNAGS-NS

GSAGE
GSAINT
LINKX
ACM-GCN
AGS-NS

(b) Small Homophilic Graphs

0 10 20
Loss of Quality (F1) wrt to the Best

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s (
8

Pr
ob

le
m

s) GSAGE
GSAINT

LINKX+AGS-NS

GSAGE
GSAINT
LINKX+
AGS-NS

(c) Large Heterophilic Graphs

0 5 10 15
Loss of Quality (F1) wrt to the Best

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s (
5

Pr
ob

le
m

s) GSAGE GSAINTLINKX+
AGS-NS

GSAGE
GSAINT
LINKX+
AGS-NS

(d) Large Homophilic Graphs

Figure 6: Quality Profile: The X-axis shows the 𝐹1 score of an algorithm relative to the best performing algorithm for problems,
and the Y-axis shows the fraction of problems an algorithm solves with at most the given relative 𝐹1 score. (See the text for
details.) We compare AGS to two scalable homophilic GNNs (GSAGE, GSAINT) and two heterophilic GNNs (ACM-GCN, LINKX).
For small (|V| < 100𝐾) and large (|V| ≥ 100𝐾) graphs, we consider LINKX (full-batch) and LINKX+ (mini-batch), respectively.
Full results are reported in Appendix 7.3.

performance plot reveals a ranking of the algorithms in terms of

their quality. The closer a curve (algorithm) is to the Y-axis, and

the smaller the difference in the X-axis, the better its performance

w.r.t. other algorithms across all the problems considered.

Fig. 6a summarizes results from five algorithms across 17 test

problems for small heterophilic graphs, where we observe that AGS-
NS performs the best or close-to-best for about half of the problems

and has up to 10% lower 𝐹1 scores compared to the best algorithm

for the other half. ACM-GCN performs similarly to AGS-NS for

these small graphs. While LINKX achieves comparable accuracies

to AGS-NS for most of the problems (about 80%), for a few problems

it achieves lower 𝐹1 scores. For large heterophilic graphs (Fig. 6c),

performance improvement for AGS-NS is considerably better than

all algorithms. LINKX+ performs second-best for 75% of the prob-

lems. In small homophilic graphs (Fig. 6b), AGS-NS and GSAGE

are the top two performers for most of the problems, followed by

GSAINT, ACM-GCN, and LINKX. This is expected since ACM-GCN

and LINKX are tailored for heterophilic graphs. In large homophilic

graphs (Fig. 6d), AGS-NS is the best-performing algorithm in terms

of accuracy, followed by GSAGE. We also observe from this figure

that for homophilic graphs, LINKX+ is not competitive.

In Table. 10 (Appendix 7.4) we present performance of AGS-
NS compared to 18 recent competing algorithms on small het-

erophilic graphs. ACM-GCN, AGS-NS, and LINKX remain the best-

performing, with AGS-NS as the leading method for these inputs.

The full set of results with numerical values are provided in Ap-

pendix (Tables 6, 7, 8, 9, 10). These tables present the mean (𝜇) and

standard deviation (𝜎) of the runs. We use a one-tailed statistical hy-

pothesis 𝑡-test to verify whether one set of values is better than the

other. The best results for each problem are highlighted in boldface.

5.3 Ablation study
We now investigate the contribution of individual components of

AGS-GNN, employing different sampling strategies and GNNs. For

GNNs, we consider GSAGE (spatial) and Chebnet [13] (spectral).
We sample ⌊𝑑𝑢 · 𝑘′⌋ (𝑘′ ∈ [0, 1]) neighbors for each node 𝑢 using

similarity and diversity-based sparsification using precomputed

weights (detailed in Section 3.2), and random sparsification that

Dataset CoraSyn0.05 CoraSyn0.25 CoraSyn0.50

GNN GSAGE Chebnet GSAGE Chebnet GSAGE Chebnet

Sparse 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Random 57.08 0.46 56.44 0.14 61.85 0.94 62.14 1.29 92.09 0.79 92.48 0.72

Similar 48.50 0.29 50.91 0.22 71.66 0.42 71.02 0.17 92.48 0.51 91.71 0.25

Diverse 61.79 0.17 64.67 0.22 53.91 0.22 57.03 0.30 79.48 0.36 76.07 0.36

Whole 63.67 0.43 62.79 0.25 69.49 0.38 67.61 0.22 96.94 0.08 96.47 0.14

Table 1: 𝐹1 scores of a single sparse subgraphkeeping ⌊0.25·𝑑𝑢⌋
neighbors of node 𝑢. Three synthetic versions of Cora are
produced (𝑑 = 200 and H𝑛 0.05, 0.25, and 0.50, respectively).

Dataset CoraSyn0.05 CoraSyn0.25 CoraSyn0.50

GNN GSAGE Chebnet GSAGE Chebnet GSAGE Chebnet

Sampler 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Random 59.20 0.22 57.50 0.80 62.85 0.55 61.67 0.46 91.06 0.36 88.89 1.32

Similar 54.44 0.68 54.03 0.51 69.19 0.08 67.43 0.30 92.00 0.08 91.71 0.29

Diverse 60.96 0.55 61.73 0.43 56.67 0.46 58.38 0.25 86.65 0.44 83.54 0.79

Table 2: 𝐹1 scores using different subgraph samples (𝑘 =

[25, 25]). Three synthetic versions of Cora are produced (𝑑 =

200 and H𝑛 0.05, 0.25, and 0.50, respectively).

selects a subgraph uniformly at random. Only a single sampled

subgraph is used throughout the training. For experiments, we

generate three synthetic versions of Cora with average degree

𝑑 = 200, keeping the original nodes and features the same but

changing the connectivity to have strong (0.05), moderate (0.25),

and weak (0.50) heterophily. The distribution of heterophily for

each node is close to uniform. Table 1 shows that diversity-based

selection performs best with strong heterophily, and with spectral

GNN, it even achieves accuracy better than using the entire graph.

In contrast, on moderate heterophily, the similarity-based selection

performs the best (even better than the whole graph). For weak

heterophily (homophily), similar and random sparse perform alike.

When we convert these into a sampling paradigm (node sampling

or graph sampling), similar behavior can be seen (Table 2) as we

get the best performance from diversity-based selection for strong

heterophily and similarity-based for moderate heterophily with

a wide margin over random. For weak heterophily or homophily,

similarity-based sampling performs slightly better than random.

545

AGS-GNN: Attribute-guided Sampling for Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

ACM-GCN LINKX AGS (Sim. + Sim.) AGS (Div. + Div.) AGS (Sim. + Div.)

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

35.33 0.69 34.20 0.78 60.81 0.77 62.83 0.85 63.03 0.50

Table 3: 𝐹1 scores of two-channel GNNs with different
weighted samplers in a synthetic Cora graph with a mix
of locally heterophilic and homophilic nodes (H𝑛 (𝑢) =

[0.05, 0.50]).

Since real-world graphs have nonuniform node homophily, we

generated a synthetic version of Cora where individual nodes have
different local node homophily in the range [0.05, 0.50]. Table 3
shows that AGS-GNNwith dual channels (one for homophily and

one for heterophily) performs the best, significantly outperforming

ACM-GCN and LINKX.

0 10 20 30
Loss of Quality (F1) wrt to the Best

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s (
5

Pr
ob

le
m

s) AGS-GSAGE AGS-GSAINT(rw)
AGS-Chebnet AGS-GCN

AGS-GAT
AGS-GIN

AGS-GSAGE
AGS-GSAINT(rw)
AGS-Chebnet
AGS-GCN
AGS-GAT
AGS-GIN

Figure 7: Quality Profile: X-axis is the relative 𝐹1 scores for
different GNNs coupled with the AGS sampler on five bench-
mark heterophilic graphs. The Y-axis shows the fraction of
problems solved with at most a given relative 𝐹1 score.

We coupled our node and graph sampling strategies to existing

GNNs (GSAGE, Chebnet, GSAINT, GIN, GAT, and GCN) and eval-

uated them on five heterophilic graphs (Reed98, Roman-empire,
Actor, Minesweeper, Tolokers). We summarize the key results

as a performance profile in Fig. 7 and observe that AGSwith GSAGE,

Chebnet, and GSAINT performed the best.

5.4 Experimental Runtime and Convergence
Table 4 shows per epoch training time and Table 5 shows pre-

computation time of different methods under the same settings.

For large datasets such as Reddit, with a single worker thread

our current implementation of weighted sampling requires about 3

times more time than the random sampling used in GSAGE due to

the dual channels and a few implementation differences with Py-

TorchGeometric. The pre-computation time for similarity ranking

is faster than that for submodular-based diversity-based ranking.

A faster computation of diversity ranking is left for future work.

Fig. 8 shows the number of epochs required to converge for random

sampling (GSAGE) and our weighted sampling (AGS-GNN). Using
the same settings, we see that AGS-GNN is more stable and requires

fewer epochs on average to converge than GSAGE.

6 Conclusions
In this work, we proposed attribute-guided sampling that uses node

features in an unsupervised and supervised fashion.We have shown

that through a biased sampling of similar and diverse neighbors,

Method Settings Reddit Genius Yelp

GSAGE 𝑘 = [25, 10], 𝑏 = 1024, ℓ = 2, H=256 5.47 2.16 7.71

GSAINT 𝑏 = 4096, rw, step = 2, ℓ = 2, H = 256 8.01 2.10 4.34

LINKX+ random 100 parts, b = 2, H = 32 10.63 2.35 3.54

AGS-NS 𝑘 = [25, 10], b = 1024, ℓ = 2, H = 256 18.44 2.43 13.30

AGS-GS 𝑏 = 4096, wrw, step = 2, ℓ = 2, H = 256 5.90 1.72 4.06

Table 4: Average training time (seconds/epoch). rw and wrw re-
fer to random walk and weighted random walk, respectively.

Method Settings Reddit Genius Yelp

GSAINT Norm Computation 414.93 92.30 215.99

Sim. Ranking step, 𝑘1, 𝑘2 = 20% 60.03 6.00 41.20

Div. Ranking step, 𝑘1, 𝑘2 = 20% 600.00 16.37 55.62

Learning Sim. (epoch) H = 256, b = 10000 7.01 1.00 4.03

Table 5: Pre-computation time (seconds) of different compo-
nents of AGS-GNN and GSAINT with a single worker thread.
For similarity and diversity ranking, ’step’ is used as a proba-
bility mass function where 𝑘1 and 𝑘2 percentage of neighbors
are assigned the same weight.

ree
d9

8

am
he

rst
41

pe
nn

94

co
rne

ll5

Squ
irr

el

joh
nsh

op
kin

s55

Cha
mele

on

Tolo
ke

rs
Flic

kr

Com
pu

ter
s
Pho

to

Phy
sic

s0

100

200

300

400

500

Ep
oc

hs

GSAGE
AGS-GNN

Figure 8: Number of epochs for AGS-GNN and GSAGE to con-
verge. Here, methods are run to a maximum epoch of 500.

we get improved performance in homophilic graphs and can han-

dle challenging heterophilic graphs. We verify our claims through

exhaustive experimentation on various benchmark datasets and

methods. A limitation of our work is the time required for sub-

modular optimization when the facility location function is used;

the computation complexity is higher for dense graphs. We will

optimize this implementation in our future work and build an end-

to-end process for supervised sampling.

Acknowledgments
This work is supported at the Pacific Northwest National Labo-

ratory by the U.S. Department of Energy through the Exascale

Computing Project (17-SC-20-SC) (ExaGraph), and the Laboratory

Directed Research and Development (LDRD) Program. At Purdue,

work is supported by ExaGraph and the Advanced Scientific Com-

puting Research program of the Office of Science through grant

DE-SC0022260. At Boise State University, work is supported by the

National Centers of Academic Excellence in Cybersecurity grant

(H98230-22-1-0300), which is part of the National Security Agency.

546

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

References
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, et al. 2019. MixHop: Higher-Order Graph Convolutional Architectures

via Sparsified Neighborhood Mixing. In The 36th International Conference on
Machine Learning, Vol. 97. PMLR, Long Beach, California, USA, 21–29.

[2] Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang

Wang, Peng He, and Zhoujun Li. 2020. Label-Aware Graph Convolutional Net-

works. In The 29th International Conference on Information and Knowledge Man-
agement. ACM, Virtual Event, Ireland, 1977–1980.

[3] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph

Convolutional Networks via Importance Sampling. In The 6th International Con-
ference on Learning Representations. OpenReview.net, Vancouver, BC, Canada.

[4] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-

tional Networks with Variance Reduction. In The 35th International Conference
on Machine Learning, Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR,

Stockholm, Sweden, July, 941–949.

[5] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020. Sim-

ple and Deep Graph Convolutional Networks. In The 37th International Conference
on Machine Learning, Vol. 119. PMLR, Virtual Event, 1725–1735.

[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph

Convolutional Networks. In The 25th International Conference on Knowledge
Discovery & Data Mining, KDD. ACM, Anchorage, AK, USA, 257–266.

[7] Davide Chicco. 2021. Siamese Neural Networks: An Overview. In Artificial Neural
Networks - Third Edition. Vol. 2190. Springer, 73–94.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In The 9th International Conference
on Learning Representations. OpenReview.net, Virtual Event, Austria.

[9] VenkatesanNallampatti Ekambaram. 2014. Graph Structured Data Viewed Through
a Fourier Lens. Ph. D. Dissertation. http://www.eecs.berkeley.edu/Pubs/TechRpts/

2013/EECS-2013-209.html

[10] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. CoRR abs/1903.02428 (2019).

[11] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-

tion Learning on Large Graphs. In The Annual Conference on Neural Information
Processing Systems 2017. Long Beach, CA, USA, 1024–1034.

[13] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional neural net-

works on graphs with chebyshev approximation, revisited. Advances in Neural
Information Processing Systems 35 (2022), 7264–7276.

[14] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson.

2021. Combining Label Propagation and Simple Models out-performs Graph

Neural Networks. In The 9th International Conference on Learning Representations.
OpenReview.net, Virtual Event, Austria.

[15] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive

Sampling Towards Fast Graph Representation Learning. In The Annual Conference
on Neural Information Processing Systems. Montréal, Canada, 4563–4572.

[16] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node

Similarity Preserving Graph Convolutional Networks. In The Fourteenth ACM
International Conference on Web Search and Data Mining. ACM, Virtual Event,

Israel, 148–156.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In The 3rd International Conference on Learning Representations. Open-
Review.net, San Diego, CA, USA.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In The 5th International Conference on Learning
Representations. OpenReview.net, Toulon, France.

[19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

The 7th International Conference on Learning Representations. OpenReview.net,
New Orleans, LA, USA.

[20] Andreas Krause andDaniel Golovin. 2014. Submodular FunctionMaximization. In

Tractability: Practical Approaches to Hard Problems. Vol. 3. Cambridge University

Press, 71–104.

[21] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and

Weining Qian. 2022. Finding Global Homophily in Graph Neural Networks

When Meeting Heterophily. In The International Conference on Machine Learning,
Vol. 162. PMLR, Baltimore, Maryland, USA, 13242–13256.

[22] Ningyi Liao, Siqiang Luo, Xiang Li, and Jieming Shi. 2023. LD2: Scalable Het-

erophilous Graph Neural Network with Decoupled Embeddings. In The Annual
Conference on Neural Information Processing Systems. New Orleans, LA, USA.

[23] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar

Bhalerao, and Ser Nam Lim. 2021. Large Scale Learning on Non-Homophilous

Graphs: New Benchmarks and Strong Simple Methods. Advances in Neural
Information Processing Systems 34 (2021), 20887–20902.

[24] Meng Liu, Zhengyang Wang, and Shuiwang Ji. 2021. Non-local graph neural

networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 12

(2021), 10270–10276.

[25] Sitao Luan, ChenqingHua, Qincheng Lu, Jiaqi Zhu,Mingde Zhao, Shuyuan Zhang,

Xiao-Wen Chang, and Doina Precup. 2022. Revisiting Heterophily For Graph

Neural Networks. In The Annual Conference on Neural Information Processing
Systems. New Orleans, LA, USA.

[26] Sitao Luan, Mingde Zhao, Chenqing Hua, Xiao-Wen Chang, and Doina Precup.

2022. Complete the Missing Half: Augmenting Aggregation Filtering with Di-

versification for Graph Convolutional Neural Networks. CoRR abs/2212.10822

(2022).

[27] Michel Minoux. 1978. Accelerated Greedy Algorithms for Maximizing Sub-

modular Set Functions. Optimization Techniques. Lecture Notes in Control and
Information Sciences 7 (1978), 234–243.

[28] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An

Analysis of Approximations for Maximizing Submodular Set Functions—I. Math-
ematical Programming 14 (1978), 265–294.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In The
Annual Conference on Neural Information Processing Systems, Vol. 32. Vancouver,
BC, Canada, 8024–8035.

[30] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In The 8th International
Conference on Learning Representations. OpenReview.net, Addis Ababa, Ethiopia.

[31] Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova.

2023. Characterizing Graph Datasets for Node Classification: Homophily-

Heterophily Dichotomy and Beyond. In The Annual Conference on Neural Infor-
mation Processing Systems 2023. New Orleans, LA, USA.

[32] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila

Prokhorenkova. 2023. A Critical Look at the Evaluation of GNNs under Het-

erophily: Are We Really Making Progress?. In The 11th International Conference
on Learning Representations. OpenReview.net, Kigali, Rwanda.

[33] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale Attributed

Node Embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[34] Jacob Schreiber, Jeffrey Bilmes, and William Stafford Noble. 2020. Apricot: Sub-

modular Selection for Data Summarization in Python. The Journal of Machine
Learning Research 21, 1 (2020), 6474–6479.

[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29, 3 (2008), 93–93.

[36] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised

learning. Machine Learning 109, 2 (2020), 373–440.

[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In The 6th International
Conference on Learning Representations. OpenReview.net, Vancouver, BC, Canada.

[38] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, et al. 2019. Deep

Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. CoRR
abs/1909.01315 (2019).

[39] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In The
36th International Conference on Machine Learning, Vol. 97. PMLR, Long Beach,

California, USA, 6861–6871.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In The 7th International Conference on Learning
Representations. OpenReview.net, New Orleans, LA, USA.

[41] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In The 35th International Conference on
Machine Learning, Vol. 80. PMLR, Stockholm, Sweden, 5449–5458.

[42] Zhe Xu, Yuzhong Chen, Qinghai Zhou, et al. 2023. Node Classification Beyond

Homophily: Towards a General Solution. In The 29th Conference on Knowledge
Discovery and Data Mining. ACM, Long Beach, CA, USA, 2862–2873.

[43] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.

2022. Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph

Convolutional Neural Networks. In International Conference on Data Mining,
Xingquan Zhu, Sanjay Ranka, My T. Thai, Takashi Washio, and Xindong Wu

(Eds.). IEEE, Orlando,FL, USA, 1287–1292.

[44] Tianmeng Yang, Yujing Wang, Zhihan Yue, Yaming Yang, Yunhai Tong, and Jing

Bai. 2022. Graph Pointer Neural Networks. In The 36th AAAI Conference on
Artificial Intelligence. AAAI Press, Virtual Event, 8832–8839.

[45] Yang Ye and Shihao Ji. 2019. Sparse Graph Attention Networks. CoRR
abs/1912.00552 (2019).

[46] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning

Method. In The 8th International Conference on Learning Representations. Open-
Review.net, Addis Ababa, Ethiopia.

[47] Elena Zheleva and Lise Getoor. 2009. To Join or Not to Join: The Illusion of

Privacy in Social Networks with Mixed Public and Private User Profiles. In The

547

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-209.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-209.html

AGS-GNN: Attribute-guided Sampling for Graph Neural Networks KDD ’24, August 25–29, 2024, Barcelona, Spain

18th International Conference on World Wide Web. ACM, Madrid, Spain, 531–540.

[48] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, et al. 2020. Robust Graph

Representation Learning via Neural Sparsification. In The 37th International
Conference on Machine Learning, Vol. 119. PMLR, Virtual Event, 11458–11468.

[49] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S. Yu. 2022. Graph

Neural Networks for Graphs with Heterophily: A Survey. CoRR abs/2202.07082

(2022).

[50] Jiong Zhu, Ryan A. Rossi, Anup Rao, et al. 2021. Graph Neural Networks with

Heterophily. In The 35th AAAI Conference on Artificial Intelligence. AAAI Press,
Virtual Event, 11168–11176.

[51] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations

and Effective Designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

7 Appendix

7.1 Proof of Lemma 2.1: Homophily of
similarity-based selection

Proof. Consider an ego node 𝑡 = {𝒙𝑡 , 𝑦𝑡 } where 𝒙𝑡 , and 𝑦𝑡 are
its feature and label, respectively. Let the feature and labels of the

neighboring nodes of 𝑡 beN(𝑡) = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), · · · , (𝒙𝑑𝑡 , 𝑦𝑑𝑡)}.
Let 𝑠 (𝒙𝑖 , 𝒙𝑡) be a similarity function that measures how similar

the feature of a neighbor 𝑥𝑖 is to the feature of the ego node 𝒙𝑡 .
This function returns a positive value, and higher values indicate

higher similarity. A probability distribution with probability mass

function 𝑝S (𝑖) assigns a probability to each neighbor 𝑖 based on

its similarity to the ego node. The distribution should satisfy the

following properties:

• 𝑝S (𝑖) ≥ 0 for all 𝑖;
∑𝑑𝑡
𝑖=1

𝑝S (𝑖) = 1;

• 𝑝S (𝑖) is proportional to 𝑠 (𝒙𝑖 , 𝒙𝑡). (e.g., 𝑝S (𝑖) =
𝑠 (𝒙𝑖 ,𝒙𝑡)∑𝑑𝑡
𝑗=1

𝑠 (𝒙 𝑗 ,𝒙𝑡)
.)

Let 𝐼 (𝑦𝑖 = 𝑦𝑡) be an indicator function that returns 1 if 𝑦𝑖 = 𝑦𝑡
and 0 otherwise. If a neighbor 𝑖 of a node 𝑡 is selected randomly

then 𝑝U (𝑖) = 1

𝑑𝑡
. Therefore the probability of selecting a neighbor

randomly having the same label as the ego node is,

𝑃U (𝑦𝑖 = 𝑦𝑡) =
𝑑𝑡∑︁
𝑖=1

𝑝U (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡) =
1

𝑑𝑡
·
𝑑𝑡∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑡) .

If the selection probability is based on similarity, then

𝑃S (𝑦𝑖 = 𝑦𝑡) =
𝑑𝑡∑︁
𝑖=1

𝑝S (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡)

=

𝑑𝑡∑︁
𝑖=1

𝑠 (𝒙𝑖 , 𝒙𝑡)∑𝑑𝑡
𝑗=1

𝑠 (𝒙 𝑗 , 𝒙𝑡)
· 𝐼 (𝑦𝑖 = 𝑦𝑡).

Let 𝑛 be the number of neighbors having the same label as ego

node 𝑡 , i.e., 𝑛 =
∑𝑑𝑡
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑡). Let 𝑠𝑡 be the sum of similarities of

all neighbors having the same label as 𝑡 , i.e., 𝑠𝑡 =
∑𝑑𝑡
𝑖=1

(𝑠 (𝒙𝑖 , 𝒙𝑡) ·
𝐼 (𝑦𝑖 = 𝑦𝑡). Also let 𝑠𝑑 denote the sum of similarities of all neighbors

of 𝑡 , then 𝑠𝑑 =
∑𝑑𝑡

𝑗=1
𝑠 (𝒙 𝑗 , 𝒙𝑡).

We can now use these expressions and the substitutions shown

below to derive the result. From Assumption 2.1,

𝑠𝑡

𝑛
≥ 𝑠𝑑

𝑑𝑡
=⇒ 𝑠𝑡

𝑠𝑑
≥ 𝑛

𝑑𝑡
,

1∑𝑑𝑡
𝑗=1

𝑠 (𝑥 𝑗 , 𝑥𝑡)

𝑑𝑡∑︁
𝑖=1

𝑠 (𝒙𝑖 , 𝒙𝑡) · 𝐼 (𝑦𝑖 = 𝑦𝑡) ≥
1

𝑑𝑡
·
𝑑𝑡∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑑𝑡∑︁
𝑖=1

𝑠 (𝒙𝑖 , 𝒙𝑡)∑𝑑𝑡
𝑗=1

𝑠 (𝒙 𝑗 , 𝒙𝑡)
· 𝐼 (𝑦𝑖 = 𝑦𝑡) ≥

𝑑𝑡∑︁
𝑖=1

1

𝑑𝑡
· 𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑑𝑡∑︁
𝑖=1

𝑝S (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡) ≥
𝑑𝑡∑︁
𝑖=1

𝑝U (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑃S (𝑦𝑖 = 𝑦𝑡) ≥ 𝑃U (𝑦𝑖 = 𝑦𝑡),
H ′

𝑛 (𝑡) ≥ H𝑛 (𝑡) .
□

7.2 Proof of Lemma 2.2: Homophily of
diversity-based selection

Proof. Let the probability mass function of the distribution be

proportional to the marginal gain values of the greedy submodular

algorithm (Algorithm 3, i.e., 𝑝D (𝑖) = 𝑓𝑖/
∑𝑑𝑡

𝑗=1
𝑓𝑗 . The higher the

marginal gain, the higher the selection probability.

If a neighbor is selected randomly, then 𝑝U (𝑖) = 1

𝑑𝑡
. Therefore,

the probability of selecting a neighbor randomly having the same

label as the ego node is

𝑃U (𝑦𝑖 = 𝑦𝑡) =
1

𝑑𝑡
·
𝑑𝑡∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑡).

If the selection probability is based on the marginal gain, then

𝑃D (𝑦𝑖 = 𝑦𝑡) =
𝑑𝑡∑︁
𝑖=1

𝑝D (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡)

=

𝑑𝑡∑︁
𝑖=1

𝑓𝑖∑𝑑𝑡
𝑗=1

𝑓𝑗

· 𝐼 (𝑦𝑖 = 𝑦𝑡) .

Let𝑛 be the number of neighbors having the same label as the ego

node 𝑡 , i.e.,𝑛 =
∑𝑑
𝑖=1 𝐼 (𝑦𝑖 = 𝑦𝑡). Let𝑚𝑡 be the sum of marginal gains

of all neighbors having the same label as 𝑡 , i.e.,𝑚𝑡 =
∑𝑑𝑡
𝑖=1

(𝑓𝑖)·𝐼 (𝑦𝑖 =
𝑦𝑡), and let𝑚𝑑 denote the sum of all marginal gains of the neighbors

𝑚𝑑 =
∑𝑑𝑡

𝑗=1
𝑓𝑗 .

We use the above expressions, and the substitutions shown below

get the desired result. From Assumption 2.2,

𝑚𝑡

𝑛
≤ 𝑚𝑑

𝑑𝑡
=⇒ 𝑚𝑡

𝑚𝑑

≤ 𝑛

𝑑𝑡
,

1∑𝑑
𝑗=1 𝑓𝑗

𝑑𝑡∑︁
𝑖=1

𝑓𝑖 · 𝐼 (𝑦𝑖 = 𝑦𝑡) ≤
1

𝑑𝑡
·

𝑑∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑑𝑡∑︁
𝑖=1

𝑓𝑖∑𝑑𝑡
𝑗=1

𝑓𝑗

· 𝐼 (𝑦𝑖 = 𝑦𝑡) ≤
𝑑𝑡∑︁
𝑖=1

1

𝑑𝑡
· 𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑑𝑡∑︁
𝑖=1

𝑝D (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡) ≤
𝑑𝑡∑︁
𝑖=1

𝑝U (𝑖) · 𝐼 (𝑦𝑖 = 𝑦𝑡),

𝑃D (𝑦𝑖 = 𝑦𝑡) ≤ 𝑃U (𝑦𝑖 = 𝑦𝑡),
H ′

𝑛 (𝑡) ≤ H𝑛 (𝑡) .
□

548

KDD ’24, August 25–29, 2024, Barcelona, Spain Siddhartha Shankar Das, S M Ferdous, Mahantesh M Halappanavar, Edoardo Serra & Alex Pothen

7.3 AGS-GNN performance comparison
Table 6,7,8,9 shows numerical results of the algorithms for small

and large heterophilic and homophilic graphs.

Small GSAGE GSAINT LINKX† ACMGCN AGS-NS

Heterophilic 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Cornell 71.35 6.07 67.03 3.15 76.76 4.32 74.59 1.32 74.59 2.16

Texas 77.30 5.57 79.46 6.53 81.62 2.02 84.32 7.13 84.86 6.19

Wisconsin 79.61 3.64 79.61 6.86 83.53 4.74 84.31 3.28 81.96 4.71

reed98 61.87 0.53 64.15 0.69 66.63 1.37 66.11 1.25 66.74 1.37

amherst41 66.62 0.33 69.57 0.71 78.64 0.35 78.12 0.30 79.19 0.47

penn94 75.65 0.42 75.11 0.33 85.92 0.32 85.38 0.53 76.06 0.41

Roman-empire 79.52 0.42 77.51 0.47 59.14 0.45 71.42 0.39 80.49 0.48

cornell5 69.22 0.12 68.10 0.15 80.10 0.27 78.43 0.50 82.84 0.01

Squirrel 38.66 1.24 39.14 1.45 35.91 1.09 72.06 2.21 68.24 0.97

johnshopkins55 67.37 0.54 67.43 0.20 79.63 0.16 77.37 0.61 78.13 0.42

Actor 34.82 0.55 35.24 0.81 33.93 0.82 34.42 1.08 36.55 0.93

Minesweeper 85.74 0.25 85.46 0.49 80.02 0.03 80.33 0.23 85.56 0.28

Questions 97.13 0.01 97.18 0.04 97.06 0.03 97.02 0.00 97.27 0.04

Chameleon 51.18 2.70 52.32 2.47 50.18 2.01 75.81 1.67 73.46 2.29

Tolokers 79.15 0.32 78.89 0.37 80.07 0.53 80.45 0.54 80.52 0.41

Flickr 50.86 0.32 50.28 0.11 53.81 0.31 52.19 0.24 51.52 0.13

Amazon-ratings 48.08 0.38 52.21 0.27 52.68 0.26 52.94 0.23 53.21 0.46

Table 6:Micro 𝐹1-measure in small heterophilic graphs (|V| <
100𝐾).

Small

Homophilic

GSAGE GSAINT LINKX† ACMGCN AGS-NS

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

cora 52.59 0.25 65.85 0.27 57.18 0.16 66.79 0.24 69.32 0.11

CiteSeer 71.14 0.10 65.84 3.86 44.20 2.49 55.42 3.43 69.33 0.31

dblp 85.80 0.16 85.65 0.21 80.47 0.04 85.68 0.24 85.97 0.11

Computers 91.31 0.11 91.77 0.14 91.38 0.17 92.03 0.48 92.18 0.08

pubmed 89.00 0.09 88.57 0.14 85.05 0.25 83.79 0.15 89.34 0.07

cora_ml 88.71 0.23 87.21 0.37 80.67 0.32 85.28 0.12 87.70 0.08

Cora 80.56 0.52 79.12 1.22 59.28 3.80 71.16 0.98 81.13 0.90

CS 95.13 0.19 95.81 0.07 94.48 0.12 94.80 0.34 95.18 0.06

Photo 96.58 0.09 96.51 0.10 95.48 0.15 96.21 0.11 96.56 0.16

Physics 96.64 0.05 96.81 0.09 96.23 0.05 96.11 0.24 96.62 0.04

citeseer 95.15 0.20 95.32 0.16 88.53 0.27 94.26 0.19 95.40 0.10

Table 7: Micro 𝐹1-measure in small homophilic graphs (|V| <
100𝐾).

Large

Heterophilic

GSAGE GSAINT LINKX AGS-NS

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

genius 81.76 0.33 82.09 0.19 82.59 0.02 82.84 0.01

pokec 68.91 0.03 68.18 0.12 70.57 0.3 70.08 0.00

arxiv-year 47.5 0.15 40.04 0.32 49.89 0.18 50.27 0.10

snap-patents 48.36 0.01 32.86 0.11 43.19 1.86 48.22 0.02

twitch-gamer 61.41 0.00 61.39 0.32 59.62 0.18 61.38 0.05

AmazonProducts 62.96 0.00 75.25 0.05 50.66 0.28 73.78 0.01

Yelp 65.15 0.00 77.06 0.07 52.84 2.4 75.82 0.01

Table 8: Micro 𝐹1-measure in large heterophilic graphs (|V| ≥
100𝐾).

Large

Homophilic

GSAGE GSAINT LINKX AGS-NS

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

Reddit 95.17 0.01 93.91 0.03 92.53 0.26 95.64 0.06

Reddit2 88.94 0.32 73.3 2.2 86.54 0.44 92.23 0.11

Reddit0.525 91.31 0.06 90.46 0.05 87.13 0.18 91.91 0.06

Reddit0.425 89.33 0.07 89.13 0.06 84.38 0.61 90.27 0.1

Reddit0.325 87.19 0.12 87.69 0.15 81.97 0.31 88.48 0.05

Table 9: Micro 𝐹1-measure in large homophilic graphs (|V| ≥
100𝐾).

7.4 AGS-GNN vs. other homophilic and
heterophilic GNNs

Table. 10 shows the performance of AGS relative to the 18 recent

algorithms for small heterophilic graphs. We can see that ACM-

GCN, AGS-NS, and LINKX are the best-performing, with AGS-NS

the best among them.

reed98 amherst41 Roman-empire cornell5 Actor

GNNs 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

GSAGE [12] 61.87 0.53 66.62 0.33 79.52 0.42 69.22 0.12 34.82 0.55

GCN [18] 60.83 0.53 57.23 1.91 42.78 1.02 57.62 0.11 29.18 0.78

GAT [37] 59.59 0.46 57.09 0.54 41.73 0.73 57.64 0.5 30.64 0.8

GIN [40] 60.1 0.87 59.82 1.45 47.34 0.26 58.74 0.18 28.09 0.25

GSAINT [46] 64.15 0.69 69.57 0.71 77.51 0.47 68.1 0.15 35.24 0.81

LINKX [23] 66.63 1.37 79.64 0.35 59.14 0.45 80.1 0.27 33.93 0.82

ACM-GCN [25] 66.11 1.25 78.12 0.3 71.42 0.39 78.43 0.5 34.42 1.08

LINK [47] 60.62 2.84 70.11 1.31 8.59 0.5 71.49 0.44 22.54 1.54

MLP [11] 41.14 0.9 51.81 2.75 65.31 0.32 61.12 1.45 33.91 0.7

C&S [14] 44.66 3.23 49.71 3.39 65.42 0.3 60.12 0.96 32.41 0.68

SGC [39] 58.86 2.38 68.86 2.48 42.32 0.63 69.14 0.66 27.91 0.71

GPRGNN [8] 50.67 3.95 58.08 1.92 69.68 0.3 63.75 0.96 29.49 0.97

APPNP [19] 53.37 1.99 62.55 2.22 56.99 0.26 66.78 0.79 25.75 0.4

MixHop [1] 57.41 2.61 68.99 2.07 78.49 0.24 70.09 0.98 32.21 0.86

GCNJK [41] 58.34 3.01 71.41 2.74 58.32 0.46 68.85 0.77 26.14 0.68

GATJK [41] 61.35 4.23 70.29 1.11 71.54 0.67 69.7 0.31 26.42 0.91

LINKConcat [47] 59.79 0.96 76.06 1.47 12.06 1.61 76.87 0.33 28.09 1.65

GCNII [5] 57.51 2.77 70.32 1.48 74.82 0.26 71.97 0.28 26.29 0.27

AGS-NS 66.74 1.37 79.19 0.47 80.49 0.48 82.84 0.01 36.55 0.93

Table 10: 𝐹1 scores of additional GNNs (both homophilic and
heterophilic) on small heterophilic graphs (|V| < 100𝐾).

7.5 AGS with existing GNNs
Table 11 compares the performance of AGS with existing GNNs

(GSAGE, Chebnet, GSAINT, GIN, GAT, and GCN) evaluated on the

heterophilic graphs (Reed98, Roman-empire, Actor, Minesweeper,
Tolokers).

Methods AGS-GSAGE AGS-GSAINT AGS-Chebnet AGS-GCN AGS-GAT AGS-GIN

Dataset 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

reed98 63.32 0.76 55.44 3.04 64.56 0.84 56.58 1.20 55.85 1.33 59.48 2.00

Roman-empire 77.35 0.43 74.39 0.41 77.44 0.24 44.36 1.76 46.57 0.75 45.91 0.26

Actor 35.36 0.49 29.97 0.52 33.76 0.73 28.64 0.75 26.58 1.01 26.74 0.30

Minesweeper 84.45 0.41 82.31 0.68 84.45 0.62 80.21 0.08 80.08 0.16 80.88 0.13

Tolokers 78.33 0.14 78.69 0.39 78.31 0.35 78.16 0.00 78.16 0.00 78.38 0.11

Table 11: 𝐹1 scores of heterophilic graphs using AGS sampler
with different underlying GNNs. The best-performing mod-
els are AGS-GSAGE and AGS-Chebnet.

549

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Homophily Measures
	2.2 Effect of Homophily on Classification
	2.3 Similarity, Diversity, and Homophily

	3 Proposed Method: AGS-GNN
	3.1 Pre-computing Probability Distribution
	3.2 Sampling
	3.3 Computation Complexity

	4 Related Work
	5 Experiments
	5.1 Dataset, Setup, and Methods
	5.2 Key Results
	5.3 Ablation study
	5.4 Experimental Runtime and Convergence

	6 Conclusions
	Acknowledgments
	References
	7 Appendix
	7.1 Proof of Lemma 2.1: Homophily of similarity-based selection
	7.2 Proof of Lemma 2.2: Homophily of diversity-based selection
	7.3 AGS-GNN performance comparison
	7.4 AGS-GNN vs. other homophilic and heterophilic GNNs
	7.5 AGS with existing GNNs

